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Abstract
We study the morphological equilibration of a periodically corrugated one-
dimensional crystalline surface under various forms of interaction between
neighbouring atomic steps on the surface. The surface under consideration is
assumed to be below its roughening temperature and only surface diffusion is
considered as a means of mass transport. Both continuum and discrete equations
of motion for surface evolution are derived and compared. Continuum equations
and discrete equations of motion in the limit of ‘diffusion limited growth’ lead
to the same form of the variation of the height of the surface. The discrete
equations provide additional information on the evolution of crystal height and
terrace separations in the limit of ‘step attachment/detachment limited growth’.
While the shape of the evolving surface is determined by the dominant type
of step–step interaction between neighbouring steps on the surface, the time
dependence of terrace widths and thus of the height of the crystal depends on
the dominant surface process for a given type of the step–step interaction. The
variation of height of the corrugation depends on time as t , e−t , t−1, t−1/2

and t−1/3 and the height variation scales with the period of the corrugation
wavelength λ as λ3, λ4, λ5 and λ6 in connection with the type of interaction
between steps and the dominant atomic processes on the surface.

1. Introduction

Morphological equilibration of periodic crystalline surfaces has been a subject of study for
a long time [1]. When the surface under consideration is below its roughening temperature
TR [2], the surface mainly consists of monatomic steps separated by flat terraces. Since
the two-dimensional periodic structure of the surface is interrupted at the step edges, many
surface phenomena such as crystal growth, etching and equilibration occur through particle
attachment/detachment at the step edges. As a result surface evolution occurs only through the
motion of atomic steps on the surface and therefore step–step interactions become important,
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which is the driving force for step movements. For a comprehensive understanding of the
surface processes just mentioned it is necessary to have a detailed knowledge of step movement
on the surfaces. One-dimensional periodic profiles are ideal structures for which to study the
evolution of surfaces through the movement of steps. This is because they can be produced
easily experimentally and the motion of parallel straight steps formed on these surfaces can be
handled more appropriately theoretically.

This paper is concerned with the time dependence of the shape and height of one-
dimensional periodically corrugated crystalline surfaces when mass transport occurs only by
surface diffusion and when there is no particle flux to the surface from a third dimension. Below
TR, the surface tension (surface free energy) γ (n̂) is a function of the surface orientation n̂
and is not an analytic function. γ (n̂) has cusps along particular orientations and facets form
on the equilibrium surface corresponding to these directions. Surface tension projected along
a particular direction can be expanded in terms of various orders of surface slope in the
continuum limit or in terms of various orders of step separations in the discrete case, each
of which represents a special form of step–step interaction. Using this expansion for surface
tension, continuum equations of motion for surface evolution and discrete equations of motion
for individual steps are derived for all forms of step–step interactions considered in this study
and they are compared in various limiting surface processes. Surface evolution is considered
in the ‘diffusion limited’ (DL) and ‘step attachment/detachment limited’ (SL) growth regimes
separately. The treatment of the subject, in spirit, follows the same lines as that presented in [3]

The plan of the paper is as follows. In section 2 continuum equations for surface evolution
are derived using Mullins’ phenomenological equations for each term in the expansion of
projected surface tension corresponding to a particular form of step–step interaction. Analytical
solutions for the time dependence of the surface height are found for each type of interaction.
No attempt is made to solve for the profile of the surface in this section. In section 3 discrete
equations of motion for each step on the surface are derived and solved numerically for each
type of interaction in the two limits of surface processes (DL and SL). Surface evolution and
height variation are considered in the DL and SL limits for all cases. The scaling of the crystal
height variation with wavelength is found from numerical simulations. Analytical solutions
for the time evolution of terrace widths are also presented in both limits of surface processes
just mentioned. Section 4 contains a summary of results and conclusions.

2. Continuum equations of motion

Let us consider a one-dimensional continuous periodic surface described by a function z(x, t)
as shown in figure 1. Surface tension γ (n̂) is a non-analytic function of surface orientation
n̂ below the roughening temperature (TR) of the surface under consideration. The projected
surface tension defined as

G(zx) = γ (zx)(1 + zx)
1/2 (1)

where zx = ∂z/∂x is the slope of the surface can be expanded in a series as

G = G0 + G1|zx | + 1
2 G2z2

x + 1
3 G3|zx |3 + 1

4 G4z4
x + 1

5 G5|zx |5 + · · ·

= G0 +
5∑

n=1

1

n
Gn|zx |n + · · · (2)

where G0 is the free energy of a flat surface (facet) and the second term represents the free
energy of a step. The presence of a quadratic term in this expansion is a matter of debate [8, 9]
but we will include it since our main purpose here is to consider the effect of each term in
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Figure 1. A typical geometry of the sample used in the simulations. The xi are the time
dependent positions of steps on the surface and the distance between two neighbouring steps
is �i (t) = xi+1 − xi . The height of the surface goes down as a result of collisions and annihilations
of steps at the top and the coalescence of steps at the bottom of the profile.

the expansion on the surface evolution separately and compare them. The remaining terms
represent various forms of step–step interactions. The third order term represents step–step
interactions which may result from elastic [4–6] or entropic [7] interactions. The fourth- and
fifth-order terms originate from quadrupoles at the step interacting with force dipoles [10, 11].

When mass transport occurs by surface diffusion only, the time variation of the surface is
given by

∂z

∂ t
= −�

∂ j

∂x
(3)

where � is the volume of the diffusing particles on the surface and the surface current j (x, t)
is given by

j = − νDs

kBT

∂µ

∂x
(4)

where ν is the aerial density of particles participating in the diffusion process, Ds is the surface
diffusion constant, kB is Boltzmann’s constant, T is the absolute temperature and µ(x, t) is
the chemical potential of adsorbed species on the surface and is given by [12, 13]

µ = −�
∂

∂x

[
∂G

∂zx

]
. (5)

We have assigned the conventional value ν = a−2 where a is the lattice constant. Both
equations (3) and (4) are written with the small slope approximation in mind; otherwise the
derivatives must be with respect to an arc length of the surface.

Now we will consider each of the terms in expansion (2), one by one, and obtain surface
evolution equations using equations (3)–(5). Let us consider the term with coefficient G2,
namely the quadratic term in (2) first. This leads to the well known Mullins equation

∂z

∂ t
= −B2

∂4z

∂x4
(6)

where B2 is given in equation (10) below and, if one assumes a separated solution of the form

z(x, t) = a(t)u(x) (7)
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to this equation, an arbitrary initial periodic profile of the form u(x) = u0 sin( 2π
λ

x) with period
λ decays exponentially and preserves its shape throughout its evolution as [13, 14]

z(x, t) = u0 sin

(
2π

λ
x

)
exp(−B2(2π/λ)4t). (8)

The evolution of the height scales as λ4 with respect to the wavelength of the corrugation. When
all terms in (2) are considered the equation of motion can be shown to be given by [3, 15]

∂z

∂ t
= −

4∑
α=1

Bα+1
∂2

∂x2
(|zx |α−1zxx ) (9)

where

Bα+1 = α�2 DsGα+1

a2kBT
, α = 1, 2, 3, 4. (10)

Let us now consider each of the terms in (9), one at a time. We have already considered the
quadratic term. When only the third-order term with G3 is considered the differential equation
of surface evolution becomes

∂z

∂ t
= −B3

∂2

∂x2
(|zx |zxx ) (11)

and when a separated solution of the form given in (7) is assumed one obtains the equation

B3
∂2

∂x2
(|ux |uxx ) = −k3u (12)

for the space part and a solution of the form

a(t) = 1

k3t + 1
(13)

where k3 is a positive separation constant for the time dependence of the height of the
corrugation as shown previously [3]. Similarly when the fourth- and fifth-order terms in
(2) with coefficients G4 and G5 are considered separately the differential equations that give
the time evolution of the surface become, respectively,

∂z

∂ t
= −B4

∂2

∂x2
(z2

x zxx ) (14)

and
∂z

∂ t
= −B5

∂2

∂x2
(|zx |3zxx ). (15)

Again when a separated solution of the form (7) is assumed for these equations, the space
dependent parts become, respectively,

B4
∂2

∂x2
(|ux |2uxx ) = −k4u, (16)

B5
∂2

∂x2
(|ux |3uxx ) = −k5u (17)

where k4 and k5 are positive separation constants and the solutions to the height function
corresponding to equations (16) and (17) turn out to be

a(t) = 1

(2k4t + 1)1/2
(18)

and

a(t) = 1

(3k5t + 1)1/3
(19)
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respectively. As can be seen, a variety of solutions exist for the time dependence of the height of
the corrugation depending on the dominant form of step interactions. The general solution for
the height function when all terms in (2) are considered will be very complicated and it will not
be a linear combination of the functions given in (8), (13), (18) and (19) since the underlying
differential equation is not linear. The time dependence of the height of the corrugation can be
one of the functions just mentioned only when the corresponding interaction term is dominant
among them. In a particular experiment the behaviour of the height evolution will be a result
of all terms in (2). In the next section these results for the height evolution will be recovered
once again when discrete equations of motion for each of the steps are derived and solved
numerically in the DL growth regime. As we will see in the following section, additional
time dependence behaviour not predicted by continuum equations results in the limit of the
SL growth regime as well. We will make no attempt to solve the space dependent part of the
equations, namely equations (12), (16) and (17), in this section.

3. Discrete equations of motion

In this section we derive an equation of motion for each step on the surface and solve them
with a combination of analytical and numerical methods. From the motion of the steps, the
morphology of the surface and the evolution of its height as a function of time are obtained.
The results are compared with those of the previous section in the appropriate limits of surface
processes. Let us consider a one-dimensional surface consisting of monatomic steps separated
by terraces as shown in figure 1. The heights of the steps are taken to be equal to the lattice
constant a. Noting that the slope of the surface can be written as zx = a/� where a is the
height of a monatomic step and � is the separation between neighbouring steps, we can rewrite
equation (2) in terms of step separations as

G = G0 + G1|zx | +
1

2
G2

a2

L

∑ 1

�n
+

1

3
G3

a3

L

∑ 1

�2
n

+
1

4
G4

a4

L

∑ 1

�3
n

+
1

5
G5

a5

L

∑ 1

�4
n

+ · · ·
(20)

where L = ∑
�n is half of the wavelength λ of the corrugation. When one considers half of

the surface corrugation as is done here, then all steps will have the same sign. The interaction
of steps with opposing signs, namely the steps at the top and bottom of the profile in figure 1,
are neglected.

The motions of steps occur by the attachment/detachment of atoms to/from step edges.
From the variation of the projected surface free energy (20) when a row of atoms is
added/removed to/from the edge of a step by the atomistic processes just mentioned, one
can define the ‘chemical potential’ of the nth step as [3, 16]

µn =
4∑

α=1

Kα+1

(
1

�α+1
n

− 1

�α+1
n−1

)
(21)

where

Kα+1 = α

α + 1
Gα+1

aα+1

L
a2, α = 1, 2, 3, 4. (22)

Slightly different equations are obtained for µn for the first (n = 1) and last (n = N) steps
(see figure 1). The equation of motion of a step n can be written as [3]

dxn

dt
= k+[	µ̄n(x) − µn]+ + k−[	µ̄n−1(x) − µn]−

= v+
n + v−

n (23)
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where 	µ̄n(x) stands for the difference between the chemical potential µ̄n(x) of particles
freely diffusing on the nth terrace and that of the constant chemical potential µc of an atom
bound to the crystal at the step edge, µn is the chemical potential of the nth step just derived,
and k± are the kinetic coefficients of the step. The ± signs standing just beneath the square
brackets indicate that the relevant quantity to be evaluated is at a point just to the right (+)

and to the left (−) of a step. v+
n is the velocity of the step due to the particle exchange with

the terrace just in front of the step and similarly v−
n is the velocity of the step due to particle

exchange with the terrace just behind the step. An equation similar to (23) can be written from
mass conservation as

dxn

dt
= Ds

ν

[
dcn(x)

dx

∣∣∣∣
x+

n

− dcn−1(x)

dx

∣∣∣∣
x−

n

]
= v+

n + v−
n (24)

where cn(x) is the concentration of diffusing particles on the nth terrace and is the solution of
the steady state diffusion equation

∂cn(x)

∂ t
= Ds

∂2cn(x)

∂x2
= 0 (25)

given by

cn(x) = an + bn x, xn � x � xn+1. (26)

Making appropriate expansions of the chemical potential difference 	µ̄(x) in (23) and using
equations (24) and (26) one can solve for the bn in (26) as

bn = µn+1 − µn(
∂µ̄

∂c

)
[d + �n]

(27)

where d = a2 Ds(k−1
+ + k−1

− )/(∂µ̄/∂c) is a quantity in units of length which measures the
relative importance of surface diffusion on the terraces to the particle exchange rate at the step
edges and �n = xn+1 − xn is the distance between neighbouring steps. The equation of motion
for a step labelled n can be written in terms of the bn as

dxn

dt
= a2 Ds(bn − bn−1) (28)

which after some rearrangement becomes

dxn

dt
= (µn+1 − µn)

[d + �n]
− (µn − µn−1)

[d + �n−1]
(29)

where the factor a2 Ds(
∂µ̄

∂c )−1 is absorbed in t .
We will now present analytical solutions for the time dependence of terrace widths in

certain limits of surface processes when the surface possesses a particular profile. From
equation (28) one can write the time dependence of the step separations �n(t) as

�̇n(t) = a2 Ds(bn+1 − 2bn + bn−1). (30)

The solutions of these equations when only one of the step interaction terms in (21) is considered
(α = 1, 2, 3 or 4) can be found by proposing an equation of the form

�n(t) = An(gt + D)ζ (31)

where g, D and the An are constants yet to be determined. The solutions turn out to be

�n(t) = An[(α + 3)ηt + D]1/(α+3) (32)

for the DL regime and

�n(t) = An[(α + 2)ηt + D]1/(α+2) (33)
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for the SL regime where η is a positive separation constant and α = 1, 2, 3 or 4. η is taken to
be (α + 3)−1 in the DL regime and (α + 2)−1 in the SL regime throughout this paper. The An

actually represent the space dependent part of the solution and they satisfy the equations

Sn+1 − 2Sn + Sn−1 = ηAn (34)

where

Sn = 1

An

(
1

Aα+1
n+1

− 2

Aα+1
n

+
1

Aα+1
n−1

)
(35)

for the DL regime and

Sn = 1

d

(
1

Aα+1
n+1

− 2

Aα+1
n

+
1

Aα+1
n−1

)
(36)

for the SL regime. For both cases of DL and SL regimes, and for all values of α (=1, 2, 3 or 4)

the initial profile must satisfy the condition

�1(0)

A1
= �2(0)

A2
= · · · = �N (0)

AN
(37)

for the solutions (32) and (33) to be true. This assigns a particular shape to the profile and
the solutions given in (32) and (33) are only valid when the number of steps N on the profile
is constant and when the surface profile reaches the shape determined by equation (37). Any
periodic profile far from (37) eventually reaches that shape preserving solution and remains so
as long as there are no step annihilations at the top and there are no step coalescences at the
bottom of the profile (figure 1).

To determine the shape preserving solution (37) the An must be known. These are
solved from equations (34)–(36) using Newton’s method generalized for multi-dimensional
root finding [19] for each value of α. The Sn given in (35)–(36) are slightly different for the
two steps at the top (n = 1, 2) and at the bottom (n = N − 1, N) of the profile and these
actually form the boundary conditions needed for the solution of discrete equations (34). For
a given type of step–step interaction, i.e. for a given value of α, the solutions for the An for
the DL and SL regimes differ by nearly a constant. This means that the shape of the evolving
surface is exclusively determined by the dominant type of step–step interactions. On the other
hand, for a particular type of step–step interaction, the time dependence of the decay of the
height of the corrugation is determined by the dominant atomic processes involved, namely by
the DL or SL regime. Thus identical time dependence of the height of the crystal may result
even if the dominant step interaction terms are different, as one can see from the summary of
results shown in table 1. Therefore only if both the time dependence of the height of the crystal
and the shape of the profile are known can both the dominant type of step–step interaction (if
there is one) and the growth limiting surface process (DL or SL) be determined.

Numerical solutions for the An in the DL and SL regimes are shown in figures 2 and 3,
respectively, on a logarithmic scale. The dependence of An on n for each type of step interaction
for small n (steps that are close to the top of the profile) is shown in table 1. The exponents
of n shown are found from the slopes of the best straight line fits (dashed lines) to the data
points in figures 2 and 3 where only the first few data points are considered in the fits. The
An represent the space dependent part of the solution as previously indicated. The top of
the profile when only the quadratic term is considered is expected to obey δz ≈ (δx)2. This
translates to An ≈ n−1/2 in terms of the dependence of An on n. Similarly the top of the profile
must follow (δx)3/2, (δx)4/3 and (δx)5/4, respectively, when the third-, fourth- and fifth-order
terms are dominant in the surface free energy (2). These are expressed in terms of the An

as n−1/3, n−1/4 and n−1/5, in that order. To generalize these results, note that the top of the
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Figure 2. The variation of the An as a function of n on a log–log plot for each form of step–step
interaction term in (2) in the diffusion limited (DL) growth regime. These are found from numerical
solutions of equations (34). The variations for quadratic interactions are shown as plus signs. The
straight dashed lines passing through these points are the best least squares straight line fits obtained
taking only the first few data points. The slope of the straight line is −1/2 for quadratic interactions.
Similar curves for third-, fourth- and fifth-order interaction terms are represented by crosses, filled
circles with crosses and open squares, respectively. The slopes of the best straight line fits for these
cases are, respectively, −1/3, −1/4 and −1/5.

Table 1. The decay of the surface profile with time, the scaling of the height of the profile with
the wavelength λ and the variation of the An in equation (34) with respect to the type of interaction
between steps in the two limiting (DL and SL) surface processes. The continuum equations and
the discrete equations in the DL regime give identical time dependences of the height of the crystal
surface (a and b are arbitrary constants). The scaling behaviours shown here are obtained from
numerical solutions.

DL (d = 0) regime SL (d = ∞) regime

Interaction h(t) �n(t) Scaling h(t) �n(t) Scaling An

G2 e−t t1/4 λ4 a − bt t1/3 λ3 n−1/2

G3 t−1 t1/5 λ5 e−t t1/4 λ4 n−1/3

G4 t−1/2 t1/6 λ6 t−1 t1/5 λ5 n−1/4

G5 t−1/3 t1/7 λ7 t−1/2 t1/6 λ6 n−1/5

profile follows the dependence δz ≈ (δx)(α+1)/α which corresponds to An ≈ n−1/(α+1) where
α = 1, 2, 3 or 4.

We will now present numerical solutions of equations (29) and the resulting surface
morphologies, time dependences of terrace widths and crystal height as a function of time.
The solutions are considered in the ‘surface diffusion limited growth (d � �n)’ (DL) and
‘step attachment/detachment limited growth (d � �n)’ (SL) regimes separately. Numerical
solutions in these two limits will be presented when only one of the terms in the step chemical
potential corresponding to a particular form of step interaction is dominant at a time.

When only the quadratic term with G2 is considered an initial sinusoidal surface decays
exponentially in the DL regime as predicted by the continuum equations of motion in section 2
(equation (8)). However, in the SL regime the height of the corrugation decreases linearly with
time. A similar behaviour of the height evolution of a corrugation has been predicted before in
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Figure 3. Similar to figure 2, but in the step attachment/detachment limited growth (SL) regime.
The slopes corresponding to second-order (plus signs), third-order (crosses), fourth-order (filled
circles with crosses) and fifth-order (open squares) interaction terms are −1/2, −1/3, −1/4 and
−1/5, respectively.

connection with periodically modulated bidirectional crystal surfaces [16] and also during the
decay of sinusoidal one-dimensional profiles below TR where the anisotropic surface tension is
replaced by an analytic yet sharply peaked function along the singular direction of the surface
tension [17]. Figure 4 shows the time dependence of the height of the profile in the DL and SL
regimes of surface processes when only the quadratic term in (2) is effective. As can be seen,
the height decays exponentially for the DL regime and linearly in time in the SL regime until a
small fraction of steps remain on the surface. The height evolution deviates from exponential
and linear decay at the very late stages of the evolution as can be seen in figure 4. The symbols
on the figures represent the times at which a step disappeared from the top (and bottom) of
the profile. Whenever two steps are removed from the profile, the resulting surface no longer
satisfies equation (37), but after a short transient time it quickly approaches that shape. As
the number of steps remaining on the surface becomes a small fraction of the initial number
of steps on the surface, the time dependence of the height of the corrugation begins to deviate
from the expected behaviour. Furthermore, the height scales as λ4 for the DL regime and as
λ3 for the SL regime where λ is the wavelength of the corrugation. But the shapes of the
profiles are almost identical in the two cases as shown above with regard to solutions for the
An . There is very little rearrangement of the initial surface for the present case since the initial
profile is already a sine curve (see also figure 7). Note also that a nonlinear fit of the form
h(t) = a exp(−btη) to the exponential decay gives η = 1+ε where ε ≈ 0.05 or less depending
on the number of points considered in the fit. Since the decay deviates from the exponential
behaviour when only a handful of steps remain on the surface, the data points corresponding to
the late times of the height evolution are not considered in the fitting procedure. As the number
of data points excluded from the fit corresponding to late times of evolution increases, the value
of ε decreases but it never becomes exactly zero. A similar fit of the form h(t) = a − btη for
the linear decay gives similar results for the exponent η. The dashed lines on each curve in
figure 4 represent the best least squares straight line fits to the corresponding data points on
the curve. Each fit is made excluding the points relevant to late stages of evolution where only
a few steps remain on the surface.
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Figure 4. The time dependence of the height of the one-dimensional surface shown in figure 1
obtained from numerical solutions of equations (29) when only the quadratic term in equation (2) is
effective in the DL regime (plus signs). A similar plot for the SL regime when the third-order term
in equation (2) is effective (crosses) is also shown. The left-hand-side axis corresponds to these
plots where a log[h(t)]−t curve is depicted. The right-hand-side axis (an h(t)−t plot) is for the
case where only the quadratic term in (2) is effective in the SL regime (filled circles with crosses)
where the decay is linear with time. The dashed lines on each curve represent the best least squares
straight line fits to the corresponding points. The fits are made excluding the data points related to
very late stages of evolution where only a few steps remained on the surface. The symbols on the
curves correspond to the time when a step disappeared from the top (and bottom) of the profile and
both axes are in arbitrary units. The time axis is rescaled differently for the linear decay to fit the
data into the graph appropriately.

Next we treat the case where only the third-order term with G3 is considered in the surface
free energy. Since this case is studied in detail in [3] we will just mention that the surface
profile decays inversely in time in the DL regime and exponentially in time in the SL regime
as correctly pointed out by [18], clarifying a confusion that arose in [3]. Figure 4 depicts the
variation of the height of the surface in the SL regime when the third-order term in equation (2)
is effective. As one can see from the figure, the height decays exponentially until only a few
steps remain on the surface. The variation of the height for the DL regime is shown in figure 5
and as can be seen decays inversely with time. The scaling of the height goes in this case
as λ4 for the SL regime and as λ5 for the DL regime with respect to the wavelength of the
corrugation. The shapes of the profiles for the DL and SL regimes for this case are also almost
identical. A nonlinear fit of the form h(t) = a exp(−btη) for the SL regime and of the form
[h(t)]−1 = a − btη for the DL regime give similar results for η to that in the case where only
the quadratic interaction term is considered, above.

The solution of equations (29) when only the fourth-order term is present in the surface
free energy in (2) shows that the height of the corrugation decays as t−1/2 in the DL regime and
as t−1 in the SL regime. The t−1/2 dependence was also predicted by the continuum equations
(equation (18)). The time dependence of the height of the corrugation is shown in figure 5
for the DL and SL cases. The scalings of the height for the DL and SL cases are λ6 and
λ5, respectively. Finally, when only the fifth-order term in the expansion for the surface free
energy is considered, the height of the surface decays as t−1/3 in the DL regime and as t−1/2 in
the SL regime. Again the DL regime solution for the height is identical to the form predicted
by the continuum equations. The height evolution for the SL regime is shown in figure 5 and
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Figure 5. Similar to figure 4, but when only the third-, fourth- and fifth-order terms in equation (2)
are effective in various dominant surface processes. The left-hand-side axis relates to the curves
with crosses and plus signs and the right-hand-side axis relates to the curves with filled circles
with crosses and open squares. The height decays inversely with time in the DL regime when the
third-order term in (2) is dominant (plus signs) and also in the SL regime when the fourth-order
term in (2) is dominant (crosses). The height of the crystal decreases inversely with the square root
of time in the DL regime when the fourth-order term in (2) is dominant (filled circles with crosses)
and the same time dependence occurs in the SL regime when the fifth-order term is dominant
(open squares). The left-hand-side axis corresponds to [h(t)]−1−t plots and the right-hand-side
axis is for an [h(t)]−2−t plot. The dashed lines on each curve represent the best least squares
straight line fits to the corresponding points. The fits are made excluding the data points related
to very late stages of evolution where only a few steps remained on the surface. The symbols on
the curves correspond to the time when a step disappeared from the top (and bottom) of the profile
and both axes are in arbitrary units. The time axis is rescaled differently for the left-hand-side and
right-hand-side axes to fit the data into the graph appropriately.

that for the DL regime in figure 6. The scaling of the height for the present case turns out to
be λ7 for the DL case and λ6 for the SL case. For the present cases a nonlinear fit of the form
[h(t)]−n = a −btη where n is the appropriate exponent for the relevant interaction and surface
process gives again values for η similar to those in the previous cases considered above.

There are common points for all cases considered above: the surface rearranges itself
considerably at the beginning (except for in the case of quadratic interactions) for a certain
period of time until it reaches the shape preserving solution predicted by equation (37)
appropriate for the dominant step–step interaction. The ledges close to the top (and bottom)
of the profile approach this shape faster than the others because they can release/capture
particles much more easily so they have a greater ability to move. While the form of step
interaction determines the shape of the evolving profile, the dominant surface process (DL or
SL) determines the evolution of terrace widths, which in turn determine the evolution of the
height of the corrugation. Whenever two steps disappear from the profile (from the top and
bottom by symmetry) the resulting surface profile does not strictly follow the form given in (37)
but after a short transient time approaches this shape. The continuum equations and discrete
equations give identical results for the evolution of the height of the crystal in the diffusion
limited growth regime. Scaling of the height with wavelength takes place for all cases. These
results are summarized in table 1.

To complete the treatment of the subject we show the time dependence of the terrace widths
and compare the numerical results with those from analytical solutions given in (32) and (33).
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Figure 7. The time variation of the ratio (�n(t)/An)(α+3) in the DL regime when there are 20 steps
on the surface. The �n(t) are found from the numerical solution of equation (30) and the An are
found from numerical solution of equations (34), (35). α = 1, 2, 3 or 4 when second-order (G2),
third-order (G3), fourth-order (G4) and fifth-order (G5) terms in (2) are dominant, respectively.
The initial surface is a sine curve and the top (and bottom) of the profile for this case is only
chosen so long that the profile reaches the shape preserving solution appropriate for the type of step
interaction under consideration without any step collisions and annihilations. As one can see from
the figure, terrace separations vary until the shape preserving solution (37) is reached at which all
ratios converge to a single value for each value of α. The labels on each curve indicate the dominant
step–step interaction term. Both the horizontal and vertical axes are normalized to unity; therefore
the values along the vertical axis are not proportional for each curve. Note that while there is almost
no rearrangement of the profile for quadratic interactions, there is considerable rearrangement for
the other interaction terms in equation (2).

The quantity (�n(t)/An)
(α+3) is plotted as a function of time in figure 7; when there are a total of

40 terraces on the initial surface, the first 20 of them are shown in the figure. Since our aim is to
test the proposed analytical solutions which are valid only after the surface profile assumes the
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Figure 8. Comparison of the surface profiles obtained by the numerical solution of equation (29)
when only the second-order (straight curves), third-order (heavy dashed curves), fourth-order (short
dashed curves) and fifth-order (dots) terms in (2) are dominant at a time at various equal crystal
heights. The profiles shown at a particular height correspond to a time when a step from the top
(and bottom) of the surface is just about to disappear. The initial surface is a sine curve (dashed
curve).

shape preserving solution (37), for these plots only the top and bottom of the profile is chosen
very long to prevent step annihilation at the top (and step coalescence at the bottom) so that the
surface approaches the shape preserving solution (37) after a while. The values corresponding
to vertical and horizontal axes are first normalized to unity and then plotted. Therefore the
values on the vertical axis are not proportional. Both axes in the figure are in arbitrary units.
As can be seen in the figure, while surface rearrangement occurs for third-, fourth- and fifth-
order interactions in (2), it is almost nonexistent for the case of quadratic interactions. This
shows that an initial sine curve is already almost the shape preserving solution for the quadratic
interactions. This was also the case for continuum equations as shown in section 2.

The appearances of surface profiles at different times for different step interactions are
shown in figure 8 at equal surface heights. The profiles shown are at a time when a step from
the top is just about to disappear and the curves are obtained by passing straight lines through
step positions. It is expected that the top of the profile must obey δz = (x − x0)

(α+1)/α where
x0 is the edge of the top facet and α = 1, 2, 3 or 4. We made no attempt to find the exponent
for the top of the profile because it is observed that the exponent sensitively depends on the
value of x0 chosen.

4. Conclusions

In this paper the evolution of the height of a crystal surface and its shape as functions of time
are investigated when one form of step–step interactions is dominant at a time. Only surface
diffusion is considered as a means of mass transfer. Continuum equations for surface evolution
and discrete equations of motion for individual steps in the diffusion limited growth regime
lead to the same form of variation of the height of the crystal. Additional time dependences of
terrace widths and thus the height of the crystal result in step attachment/detachment limited
growth for the case of discrete equations for steps. The height of the crystal decays as a
function of time as e−t or tc where c = 1, −1, −1/2 or −1/3 depending on the dominant
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type of step–step interaction and surface process. Furthermore, it is found that the height of
the crystal scales with the wavelength of the corrugation for all types of step–step interaction
and rate limiting surface process considered. While step interactions determine the shape
of the evolving surface, the dominant surface process controls the time dependence of the
terrace widths and thus of the height of the crystal for a given type of step interaction potential.
Therefore both the shape of the surface and the variation of its height as a function of time
should be known to determine both the dominant type of step–step interaction and the growth
limiting surface process. These results may be used in interpreting experimental results.
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